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The collection of all topologies on the set of three points is studied, treating the 
topology as a quantum-like observable. This turns out to be possible under the 
assumption of the asymmetry between the spaces of bra and ket vectors. Analogies 
between the introduced topologimeter and Stern-Gerlach experiments are 
outlined. 

I N T R O D U C T I O N  

An important problem in modern theoretical physics is the problem of 
quantum topology. What is quantum topology? Can one have something like 
a wave function for topologies? Can one speak about the probability of this 
or that topology, and is it possible to speak about a probability calculus for 
topologies? Are "quantum jumps" between different topologies possible? It 
is well known that in classical physics one can use the classical probability 
measure, but for molecules, atoms, elementary particles, and maybe gravity 
one has probability amplitude descriptions in terms of  wave functions. This 
is connected with the fact that the lattice of  properties of quantum system is 
nondistributive (non-Boolean) (Birkhoff and von Neumann, 1936), and one 
has the formalism of Hilbert space, noncommutative operators, wave func- 
tions, and Heisenberg uncertainty relations. 

One can speak about quantum topology if one deals with Planckian 
scales for space-time when gravity must be quantized. There is another 
interesting possibility to speak about quantum topology when, according to 
Leinaas and Myrheim (1991), one interprets the Pauli principle in terms of 
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a nontrivial topology for configuration space of a many-particle system, so 
that in the EPR experiment, when one goes from two symmetrized particles 
to the product after measuring local observables one has a change of topolo- 
gies. Here we shall investigate the simplest case of discrete topologies. From 
Zapatrin (1993) and Sorkin (1991) one can see that our analysis can give 
some insight for the continuous case as well. 

1. T O P O L O G I M E T E R  

In this paper we shall study the properties of the topology lattice for 
three points, continuing the investigation in Grib and Zapatrin (1992). The 
striking feature of this lattice and of lattices of topologies for the number of 
points n greater than or equal to 3 is that they are nondistributive. This makes 
it impossible to have classical measure on these lattices and leads to some 
resemblance of them to quantum systems, but without Planck's constant. As 
in Grib and Zapatrin (1992), consider the work of  a hypothetical "topologi- 
me te r " - -an  apparatus which can ask and obtain answers to the question: 
"What is the topology of the three-point set?" We come to the conclusion 
that due to nondistributivity of the lattice one obtains noncausal "quantum 
jumps" of topologies similar to the situation in a S tem-Ger lach  experiment 
when complementary observables are measured. Consider the triple a, (ac), 
(ab) of atomic topologies [the notations are the same as in Grib and Zapa- 
trin (1992)]: 

a A ( ( a c )  v ( a b ) )  is not equal to ( a A ( a c ) ) v ( a A ( a b ) )  (1) 

Here (ac) v (ab) for our topoiogimeter is also some topology defined following 
D'Espagnat (1976), for the case of quantum logic in the sense that if (ac) is 
"true," then ((ac) v (ab)) is true, and if (ab) is true, then (ac) v (ab) is true. 

The Boolean-minded observer comes to the following result using the 
topologimeter. Imagine he sees a is true. Then, since a = a ^ (ac) v (ab)), 
he will say, according to his Boolean distributive logic interpreting A as 
"and" and v as "or," that (ac) v (ab) is true. Then he must say that either 
(ac) or (ab) is true. However, the atomic topologies a, (ac), (ab) are incompati- 
ble since from the Hasse diagram we see that a A (ac) = (ac) A (ab) = a 
A (ab) -- 0. The escape from this contradiction is to assume the "noncausal 
jump of the topology in different moments of time." Time here plays the 
crucial role. If a is true for t = to, then the Boolean-minded observer will 
say that at some other moment t -- t~ the topology can noncausally "jump" 
into some (ac) v (ab). 

So the situation here resembles that for measuring noncommuting spin 
operators in the Stern-Gerlach experiment. To make this analysis closer to 
quantum mechanics and to obtain some "quantum topology" one can try to 
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find something like matrix representation of our lattice of topologies to 
compare it with usual Pauli matrices for spin. In this paper we show that such 
a representation can be constructed. But in contrast to quantum mechanics, one 
cannot have a formulation in terms of one Hilbert space and the wave function 
there. One must have two spaces and our matrices are operators from one 
space to the other. There are both commuting and noncommuting matrices. 
All this shows that here we have an example of a new system, different from 
classical as well as from quantum mechanical cases. 

Our matrix representation shows that there is a direct correspondence 
between noncommutativity of operators and nondistributivity of the lattice. 

For nondistributive triples a, (ac), (ab); b, (bc), (ab); c, (bc), (ac) one 
has a representation in terms of noncommuting "bra operators" (matrices): 
a does not commute with (ac) and (ab), b with (bc) and (ab), and the same 
with c. 

There are distributive triples like a, b, c or (ab), (ac), (bc). That is why 
comparing the work of our "topologimeter" with a Stern-Gerlach experiment 
one can predict the following. If the topology is fixed as "a" ("a" is true), 
then the prediction is that at the next moment if the question is asked, "is 
'(ac)' true?" the answer is ye s - - the  topology will jump from "a" to "(ac))." 
The same is true if the question is about (ab). But if the question is, "if  at 
t = to, 'a '  is true, is 'b'  true at the next moment?" the answer is no. The 
same prediction will hold for "c." The situation here resembles measuring 
two noncommuting spin projections for a quantum particle with spin 1. For 
the spin-1 case there are three commuting projectors, Sx = 1, Sx = 0, Sx = 
- 1 ,  which do not commute with S,. = 1, S:. = 0, Sy = - 1 .  

Nevertheless our lattice differs from the quantum logical lattice of a 
spin-I particle, as shown earlier (Grib and Zapatrin, 1992). It is easy to see 
from Fig. 1 that not only do (b), (c) commute with (a), but also the atomic 
(bc) does not commute with (b) and (c). 

There is no natural orthogonality in the lattice, so if one imposes some 
orthogonality in the 6-dimensional space ~ v  by defining a scalar product 
and treating mutually commuting idempotents as orthogonal projectors, one 
obtains a contradictory system of equations. So, orthogonal subspaces may 
not correspond to projectors on any topology represented in the lattice of 
Fig. 1. This can be treated as some superpositions of  topologies which are 
not observable by our topologimeter. 

The most interesting aspect which makes this system different from a 
usual quantum microparticle is that it is "classicar ' - -"macroscopic ."  There 
is no need for a macroscopic apparatus to measure complementary properties 
of some microparticle. This shows that the reason for "jumps" corresponding 
to wave packet collapse in quantum mechanics is not connected with any 
intervention of  a macroscopic apparatus, but is due to the interpretation of 
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ac(ac)(bc) bc(acl(bc ) bc(abl(bc) ab(abl(bc} ab(ab)(ac) ac(ab){ac I 

0 
Fig. 1. The lattice "r(3). 

a nondistributive lattice by some consciousness with Boolean logics. Asking 
a question using Boolean logics, consciousness interprets the non-Boolean 
structure in such a way that it uses time in order to obtain "yes-no" values 
for topologies as is also done in quantum logic. 

But contrary to the usual Stern-Gerlach experiment for the spin-I case, 
there is no need for two different complementary topologimeters for measur- 
ing noncommuting operators. It is enough to have one topologimeter, but 
one must look for two different moments of time in order to check values 
of complementary topologies. 

The absence of different classical measuring apparatuses for this case 
leads to the absence of the necessity to have different von Neumanns measur- 
ing the Hamiltonian (von Neumann, 1955) for complementary observables. 
There is no "interaction" between the Boolean consciousness and the non- 
Boolean system in this case. This makes the investigation of the non-Boolean 
lattice of topologies, comparing it with usual quantum logical systems, 
important for understanding the problem of the role of consciousness in 
measurement theory in quantum physics. 

2. REPRESENTATION OF THE TOPOLOGY LATTICE x(3) BY 
OPERATORS 

The scheme of the construction is the following. We intend to represent 
the elements of the topology lattice L = "r(3) by operators in a linear space. 



Topologimeter and Interpretation of Topology Lattice 597 

Two 6-dimensional spaces ~ v  and ~A called bra-space and ket-space, respec- 
tively, are considered. The basis of ~ v  is labeled by atoms of L, and the 
basis of ~A is labeled by coatoms of L. Then each element of L has a twofold 
representation: as a subspace of ~ v  (called bra representation) or as that of 
~A (ket representation). The meet operation in L is easily described in terms 
of the bra representation as the set-theoretic intersections of appropriate 
subspaces. The joins in L are associated with the set intersections in the ket 
representation. The object of the mathematics given below is the construction 
of joins in terms of ~ v  and meets in terms of ~gA- 

2.1. Bra and Ket Representations 

Let L = "r(3) be the lattice of all topologies on a set X = {a, b, c} of 
three points. The atoms of L are the proper weakest topologies on X, each 
of which is associated with the only proper (that is, not equal to fl or X) open 
subset of X = {a, b, c}. Denote by ~ v  the 6-dimensional linear space with 
the basis labeled by these subsets: 

= span{e~, e(~L), el, e(u~, el, e(~l)} 

The lattice L = "r(3) is a CAC (complete atomistic coatomistic) lattice (Larson 
and Andima, 1975), which is why each topology "r ~ L is the join of atomic 
topologies which are weaker than "r. So "r can be unambiguously associated 
with the subspace V~ C ~ v  spanned on the appropriate basis vectors: 

V~ = span { eA I A ~ "r } (2) 

In other words, for any subset A C X, eA ~ V~ if and only if the set A is 
open in the topology "r. 

The ket representation of L is built likewise. The coatoms of L are 
associated with the maximal proper topologies on X = {a, b, c} each of 
which is associated with an ordered pair of elements of X (Zapatrin, 1993), 
denoted by a ~ b, c ~ a, etc. For example, 

a - - ) b  is { f l , {b} ,{c} ,{b , c} , {a ,b} ,X}  

c - - ~ a  is {0 ,{a} ,{b} ,{a ,b} ,  {a,c},X} 

and so on. Now-introduce the 6-dimensional ket-space ~ a  with the basis 
labeled by ordered pairs of X = {a, b, c}: 

~A = span{f~b, fb~, f~c, f,.~, fbo fch} 

Each topology "r E L can now be represented as the subspace A, C_ ~A 
spanned on the basis vectors f~y, x, y ~ X, satisfying the following condition: 

fxy E A, r (VA ~ "r, x E a ~ y E A) (3) 
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2.2. Examples 

Six examples o f  topologies are presented in the Table I. 

2.3. Transition Between the Representations 

Let "r E L be represented by the bra-subspace Vx C ~ v .  Denote by Px 
the projector onto Vx. Let us construct  the algorithm which builds Ax by 
given Vx, and vice versa. To proceed it, first introduce the s a n d w i c h  opera to r  

S: ~ v  --~ ~A in matrix form as 

0, v --< h (i.e., the atom v is below the coa tom h) 

Sx~ = 1, otherwise 

Its transpose S r will be the operator  ST: ~A ~ ~V- Consider  the product  
SPx: ~ v  ---) ~A. In the space ~A, denote by I-Ix the projector onto the subspace 
A~. In particular, denote the projectors onto the basis vectors e~., x, y ~ {a, 
b, c} by ~r~.~, 

L e m m a  1. Let "r ~ L be a topology on X = {a, b, c}, Vx be its bra 
representation, and Px be the projector  in ~ v  associated with Vx. Then the 
projector l-Ix in ~A associated with A,  is 

l-Ix : ~ a  { "IT xy [ "IT ~. S Px = 0 } (4) 

P r o o f  ~r~. is included in the sum (4) if and only if S(xy, v) = 0 for any 
atomic topology v which is weaker  than "r. Due to (3), this means that "rr.~ 
< 1-Ix iff 

Table 1. Some Examples of Topologies 

Topology x Bra representation Ket representation 

a = Ifl, {al, X) V~ = span{e.} Aa = spanlr~rc.fhcf,.} 
(atomic topology) dim V. = I dim A,, = 4 

= {0, {a, b}, X} V, = span{e~,~hl} A~ = span{ft,,,f,..f,~bf,.b} 
(atomic topology) dim Vr m = I dim Ar = 4 

a v b = ab(ab) Vr = span{e., et,, el,, m } AT = span{f,.uf~.b} 
= [0, a, b, {a, b}, X} dim VT = 3 :~ dim V,, + dim V b dim A~ = 2 

a(bc) = {0, a, [b, c], X} Vr = span{e,,, eto,.~} AT = span[fb,.f,.t,} 
dim V T = 2 dim AT = 2 

(a ---) b) = {fl, b, c, {b, c}, VT = span{eh, e,., e~hl, elb,.~} Aq. = span{f.h} 
{a, b}, X] dim VT = 4 dim AT = 4 
(coatomic 
topology) 
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V v v  <--- "r C:~ v <~ K 

Since the lattice L is coatomistic, 'r = ^{hl'r --< h}, thus (3) implies (4). 
The following "transposed" lemma is proved likewise. Denote by PA 

the projector onto the vector eA in ~v.  

Lemma 2. The transition from the ket to the bra representation is 
described as follows: 

P~ = ~, {palp,~Srl-I, = O} (5) 

2.4. Lattice Joins in Bra Representation 

Let or, "r e L, and let their bra representations be V,, VT C ~v,  associated 
with the projectors P,~, PT, respectively. To build the projector P,,-,,~, perform 
consecutively the transition procedures described in Lemmas 1 and 2. First 
form the ket representation A,,,,~ associated with the projector (4): 

I-I~., : ~ {'rr~yl'rrxyS(P,~ + P0 = 0} (6) 

and then go backward to ~v- Here (6) is really the projector associated 
with the join since it is the meet of all upper bounds for both cr and "r 
(Zapatrin, 1994). 

2.5. An Example 

Let us explicitly build the projector associated with the join of two 
atomic topologies a and b. We have 

711 
I o l  
o l  

e o : o  I 
OI 

"0"  

0 
!1 

eb = 0 

0 

L O. 

1 0 0 0 0 O" 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

:=:~ Pb = 

"0 0 0 0 0 O" 
0 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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Set up the following order of basis vectors in Yev: eQ, eQb, eb, ebo eo e~o 
and of those in ~A: f~, fb~, fbo f.o f~b, feb; then the matrix of the sandwich 
operator is 

1 1 0 0 0 0" 
0 1 1 0 0 0 
0 0 1 1 0 0 

S =  0 0 0 1 1 0 (7) 

0 0 0 0 1 1 
1 0 0 0 0 1 

Then 

Po+P~= 

"1 0 0 0 0 O" 
0 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Hence 

S(Pa + Pb) = 

1 0 0 0 0 0" 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
1 0 0 0 0 0 

There~re the only ~ satis~ing (6) ~e  the pr~ectors onto the ~llowing 
vector: 

~=(o,o,~,o,o,o)  

~ = ( 1 ,  o,o,o,o,o) 

Hence 

I - l a v b  -~" "lT bc  -1- "ff ca 

"l 0 0 0 0 O" 
0 0 0 0 0 0 
0 0 l 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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Then, it follows from Lemma 

"1 
1 
0 

SrlI"vb = 0 

0 
0 

2 that 

0 0 0 0 
1 0 0 0 
1 l 0 0 
0 1 1 0 
0 0 1 1 
0 0 0 1 

. 

0 
0 
0 ~ 
0 
1 

"1 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

a 

0 
0 
0 
0 
0 

"1 
1 
0 
0 
0 
0 

0 0 0 0 0" 
0 0 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

The Pa satisfying 

e a ~ -  

Hence 

(5) are the projectors onto the vectors 

�9 1" "0" "0"1 
0 1 01 
0 0 - -  
0 ' e (ab)  = 0 ' eb = 0 I 

0 0 01 
0 l0  01 

l - Iavb  = "Tra "[- "lrab -'[- "fib = 

"1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

u 

0 
0 
0 4=7r a + ' f i b  

0 
0 

The other joins in ~ v  are built in the same way. 

3. C O M M U T A T I O N  R E L A T I O N S  

At first sight, the proposed representation of property lattices seems 
inconsistent with quantum mechanical intuition, since the operators associated 
with the atoms of a property lattice all commute. To reason about the commu- 
tativity of  observables we must somehow take into account both the bra and 
the ket representation at once. 
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For instance, consider the pair of operators P,, and P(,,b). They act from 
the bra-space to the ket space; therefore it makes no sense to speak about their 
commutation, since they cannot be multiplied. To speak about commutation 
relations, we have to render them to the same space. Note that we already 
have the operator doing it, namely, the sandwich matrix S of (7), and the 
operators SP, and SP(,b) will already act in the same space, having the form: 

1 0 
0 0 
0 0 

SP~ = 0 0 

0 0 
1 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

O. 
0 
0 
0 ; 
0 
0 

Se(ab) 

"0 1 0 0 0 0" 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

It can be checked directly that both are idempotents: (SP,) 2 = SPa and 
(SP(ah)) 2 = SP(uh). We could try to make them projectors (that is, self-adjoint 
operators) by introducing a scalar product in the bra-space in, say, the usual 
Euclidean way, although, unlike the quantum mechanical situation, they will 
not be self adjoint: (SP,,) r --# SP,,, (SP(,,bl) r = SPI,b ). 

We have to introduce commutation relations in such a way that they 
could grasp the entire structure of the property lattice. When we try to use 
the above projectors P,,, Ph, etc., we immediately see that they all commute, 
which contradicts the violation of distributivity (1). The idea we put forth is 
the following. Since all the operators associated with the elements of the 
lattice act from ~v  to ~A, we can render them into one space, namely ~v,  
by multiplying all of them by the matrix S from the right side. Then define 
the new product o of operators in ~v ,  

A o B := ASBS 

and calculate all commutators [P,, Pv] for all u, v E V. 

Lemma 3. For any u, v ~ V 

[ P u ' P d = S " v ( P u - P v ) = { ~  O0 otherwise if S, , , ,=0 (8) 

Proof. The proof is obtained from direct checking by multiplication of 
appropriate matrices. 

The results of the calculation are shown in Fig. 2, where the vertices 
associated with commuting projectors are linked by lines and the pairs of 
vertices which are not connected by a line are associated with noncommuting 
projectors. Now the correspondence between commutativity of projectors 
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Fig. 2. Commutativity of atomic projectors. 

and distributivity of the elements of the lattice is established. For instance, 
the atomic topologies a, b, c form a distributive triple, and the appropriate 
projectors pairwise commute. 

4. C O N C L U D I N G  R E M A R K S  

So, we see that the matrix representation of  the topology lattice for three 
points is possible if one uses the two spaces called bra- and ket-spaces. 
Contrary to usual quantum mechanics, it is impossible to identify these spaces 
and to have the usual wave function formulation in terms of vectors in one 
space. It is only for the special case of the 3-point set on which all possible 
topologies are studied that it is possible to reduce the construction to one 
space, since the bra- and ket-spaces are isomorphic only when n = 3. 

Noncommutativity of some of these matrices can lead to complementar- 
ity (as in the case of a Stern-Gerlach experiment) and to quantum jumps for 
the topologimeter. Nevertheless one must stress that the example of the 
topologimeter for the lattice of topologies for three points is an example of 
a totally new system, different from both classical and quantum systems. 
From this one comes to the conclusion that quantum topology cannot be 
thought of as some usual quantum system described by the wave functions 
as vectors in one Hilbert space, but is a new formalism for which a new 
interpretation is needed. 
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